Home‎ > ‎

About Liver Transplantation

This explains (PDF also available at the bottom of the page) all the tests and costs needed for a liver transplant.



Source: Wikipedia, http://en.wikipedia.org/wiki/Liver_transplantation


Liver transplantation or hepatic transplantation is the replacement of a diseased liver with a healthy liver allograft. The most commonly used technique is orthotopic transplantation, in which the native liver is removed and the donor organ is placed in the same anatomic location as the original liver. Liver transplantation nowadays is a well accepted treatment option for end-stage liver disease and acute liver failure. It is also one of the most expensive treatments in modern medicine.

History

The first human liver transplant was performed in 1963 by a surgical team led by Dr. Thomas Starzl[1] of Denver, Colorado, United States. Dr. Starzl performed several additional transplants over the next few years before the first short-term success was achieved in 1967 with the first one-year survival posttransplantation. Despite the development of viable surgical techniques, liver transplantation remained experimental through the 1970s, with one year patient survival in the vicinity of 25%. The introduction of ciclosporin by Sir Roy Calne markedly improved patient outcomes, and the 1980s saw recognition of liver transplantation as a standard clinical treatment for both adult and pediatric patients with appropriate indications. Liver transplantation is now performed at over one hundred centres in the USA, as well as numerous centres in Europe and elsewhere. One year patient survival is 80-85%, and outcomes continue to improve, although liver transplantation remains a formidable procedure with frequent complications. Unfortunately, the supply of liver allografts from non-living donors is far short of the number of potential recipients, a reality that has spurred the development of living donor liver transplantation.

Indications

Liver transplantation is potentially applicable to any acute or chronic condition resulting in irreversible liver dysfunction, provided that the recipient does not have other conditions that will preclude a successful transplant. Metastatic cancer outside liver, active drug or alcohol abuse and active septic infections are absolute contraindications. While infection with HIV was once considered an absolute contraindication, this has been changing recently. Advanced age and serious heart, pulmonary or other disease may also prevent transplantation (relative contraindications). Most liver transplants are performed for chronic liver diseases that lead to irreversible scarring of the liver, or cirrhosis of the liver. Another cause is cryptogenic liver disease. Some centers use the Milan criteria to select patients for liver transplantation.

Techniques

Before transplantation liver support therapy might be indicated (bridging-to-transplantation). Artificial liver support like liver dialysis or bioartificial liver support concepts are currently under preclinical and clinical evaluation. Virtually all liver transplants are done in an orthotopic fashion, that is the native liver is removed and the new liver is placed in the same anatomic location. The transplant operation can be conceptualized as consisting of the hepatectomy (liver removal) phase, the anhepatic (no liver) phase, and the postimplantation phase. The operation is done through a large incision in the upper abdomen. The hepatectomy involves division of all ligamentous attachments to the liver, as well as the common bile duct, hepatic artery, hepatic vein and portal vein. Usually, the retrohepatic portion of the inferior vena cava is removed along with the liver, although an alternative technique preserves the recipient's vena cava ("piggyback" technique).

The donor's blood in the liver will be replaced by an ice-cold organ storage solution, such as UW (Viaspan) or HTK until the allograft liver is implanted. Implantation involves anastomoses (connections) of the inferior vena cava, portal vein, and hepatic artery. After blood flow is restored to the new liver, the biliary (bile duct) anastomosis is constructed, either to the recipient's own bile duct or to the small intestine. The surgery usually takes between five and six hours, but may be longer or shorter due to the difficulty of the operation and the experience of the surgeon.


The large majority of liver transplants use the entire liver from a non-living donor for the transplant, particularly for adult recipients. A major advance in pediatric liver transplantation was the development of reduced size liver transplantation, in which a portion of an adult liver is used for an infant or small child. Further developments in this area included split liver transplantation, in which one liver is used for transplants for two recipients, and living donor liver transplantation, in which a portion of a healthy person's liver is removed and used as the allograft. Living donor liver transplantation for pediatric recipients involves removal of approximately 20% of the liver (Couinaud segments 2 and 3).

Immunosuppressive Management

Like most other allografts, a liver transplant will be rejected by the recipient unless immunosuppressive drugs are used. The immunosuppressive regimens for all solid organ transplants are fairly similar, and a variety of agents are now available. Most liver transplant recipients receive corticosteroids plus a calcinuerin inhibitor such as tacrolimus or ciclosporin plus an antimetabolite such as Mycophenolate Mofetil.

Liver transplantation is unique in that the risk of chronic rejection also decreases over time, although recipients need to take immunosuppressive medication for the rest of their lives. It is theorized that the liver may play a yet-unknown role in the maturation of certain cells pertaining to the immune system. There is at least one study by Dr. Starzl's team at the University of Pittsburgh which consisted of bone marrow biopsies taken from such patients which demonstrate genotypic chimerism in the bone marrow of liver transplant recipients.

Graft Rejection

After a liver transplantation, there are three types of graft rejection that may occur. They include hyperacute rejection, acute rejection and chronic rejection. Hyperacute rejection is caused by preformed anti-donor antibodies. It is characterized by the binding of these antibodies to antigens on vascular endothelial cells. Complement activation is involved and the effect is usually profound. Hyperacute rejection happens within minutes to hours after the transplant procedure. Unlike hyperacute rejection, which is B cell mediated, acute rejection is mediated by T cells. It involves direct cytotoxicity and cytokine mediated pathways. Acute rejection is the most common and the primary target of immunosuppressive agents. Acute rejection is usually seen within days or weeks of the transplant. Chronic rejection is the presence of any sign and symptom of rejection after 1 year. The cause of chronic rejection is still unknown but an acute rejection is a strong predictor of chronic rejections. Liver rejection may happen anytime after the transplant. Lab findings of a liver rejection include abnormal AST, ALT, GGT and liver function values such as prothrombin time, ammonia level, bilirubin level, albumin concentration, and blood glucose. Physical findings include encephalopathy, jaundice, bruising and bleeding tendency. Other nonspecific presentation are malaise, anorexia, muscle ache, low fever, slight increase in white blood count and graft tender.

Results

Prognosis is quite good. However, those with certain illnesses may differ. There is no exact model to predict survival rates; however, those with transplant have a 58% chance of surviving 15 years.Failure from the new liver occurs in 10% to 15% of all cases. These percentages are contributed to by many complications. Early graft failure is probably due to preexisting disease of the donated organ. Others include technical flaws during surgery such as revascularization that may lead to a nonfunctioning graft.

Living Donor Transplantation

Living donor liver transplantation (LDLT) has emerged in recent decades as a critical surgical option for patients with end stage liver disease, such as cirrhosis and/or hepatocellular carcinoma often attributable to one or more of the following: long-term alcohol abuse, long-term untreated Hepatitis C infection, long-term untreated Hepatitis B infection. The concept of LDLT is based on (1) the remarkable regenerative capacities of the human liver and (2) the widespread shortage of cadaveric livers for patients awaiting transplant. In LDLT, a piece of healthy liver is surgically removed from a living person and transplanted into a recipient, immediately after the recipient’s diseased liver has been entirely removed.

Historically, LDLT began as a means for parents of children with severe liver disease to donate a portion of their healthy liver to replace their child's entire damaged liver. The first report of successful LDLT was by Dr. Christoph Broelsch at the University of Chicago Medical Center in November 1989, when two-year-old Alyssa Smith received a portion of her mother's liver. Surgeons eventually realized that adult-to-adult LDLT was also possible, and now the practice is common in a few reputable medical institutes. It is considered more technically demanding than even standard, cadaveric donor liver transplantation, and also poses the ethical problems underlying the indication of a major surgical operation (hepatectomy) on a healthy human being. In various case series the risk of complications in the donor is around 10%, and very occasionally a second operation is needed. Common problems are biliary fistula, gastric stasis and infections; they are more common after removal of the right lobe of the liver. Death after LDLT has been reported at 0% (Japan), 0.3% (USA) and <1% (Europe), with risks likely to improve further as surgeons gain more experience in this procedure.

In a typical adult recipient LDLT, 55 to 70% of the liver (the right lobe) is removed from a healthy living donor. The donor's liver will regenerate approaching 100% function within 4–6 weeks and will almost reach full volumetric size with recapitulation of the normal structure soon thereafter. It may be possible to remove up to 70% of the liver from a healthy living donor without harm in most cases. The transplanted portion will reach full function and the appropriate size in the recipient as well, although it will take longer than for the donor.


Ċ
Ethans Friends,
Dec 4, 2009, 4:50 PM
Comments